Polar Co-ordinates

A polar coordinate system, gives the co-ordinates of a point with reference to a point O and a half line or ray starting at the point O. We will look at polar coordinates for points in the $x y$-plane, using the origin $(0,0)$ and the positive x-axis for reference.

A point P in the plane, has polar coordinates (r, θ), where r is the distance of the point from the origin and θ is the angle that the ray $|O P|$ makes with the positive x-axis.

Example 1

Example 1 Plot the points whose polar coordinates are given by

$$
\left(2, \frac{\pi}{4}\right) \quad\left(3,-\frac{\pi}{4}\right) \quad\left(3, \frac{7 \pi}{4}\right) \quad\left(2, \frac{5 \pi}{2}\right)
$$

Example 1

Note the representation of a point in polar coordinates is not unique. For instance for any θ the point $(0, \theta)$ represents the pole O. We extend the meaning of polar coordinate to the case when r is negative by agreeing that the two points (r, θ) and $(-r, \theta)$ are in the same line through O and at the same distance $|r|$ but on opposite side of O. Thus

$$
(-r, \theta)=(r, \theta+\pi)
$$

Example 2 Plot the point $\left(-3, \frac{3 \pi}{4}\right)$

Polar to Cartesian coordinates

To convert from Polar to Cartesian coordinates, we use the identities:

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

Example 3 Convert the following (given in polar co-ordinates) to Cartesian coordinates $\left(2, \frac{\pi}{4}\right)$ and $\left(3,-\frac{\pi}{3}\right)$

- For $\left(2, \frac{\pi}{4}\right)$, we have $r=2, \theta=\frac{\pi}{4}$. In Cartesian co-ordinates, we get $x=r \cos \theta=2 \cos (\pi / 4)=2 \frac{1}{\sqrt{2}}=\sqrt{2}$ we get $y=r \sin \theta=2 \sin (\pi / 4)=2 \frac{1}{\sqrt{2}}=\sqrt{2}$
- For $\left(3,-\frac{\pi}{3}\right)$, we have $r=3, \theta=-\frac{\pi}{3}$. In Cartesian co-ordinates, we get $x=r \cos \theta=3 \cos \left(-\frac{\pi}{3}\right)=3 \frac{1}{2}=\frac{3}{2}$ we get $y=r \sin \theta=3 \sin \left(-\frac{\pi}{3}\right)=3 \frac{-\sqrt{3}}{2}=\frac{-3 \sqrt{3}}{2}$

Cartesian to Polar coordinates

To convert from Cartesian to polar coordinates, we use the following identities

$$
r^{2}=x^{2}+y^{2}, \quad \tan \theta=\frac{y}{x}
$$

When choosing the value of θ, we must be careful to consider which quadrant the point is in, since for any given number a, there are two angles with $\tan \theta=a$, in the interval $0 \leq \theta \leq 2 \pi$.
Example 3 Give polar coordinates for the points (given in Cartesian co-ordinates) $(2,2),(1,-\sqrt{3})$, and $(-1, \sqrt{3})$

- For $(2,2)$, we have $x=2, y=2$. Therefore
$r^{2}=x^{2}+y^{2}=4+4=8$, and $r=\sqrt{8}$.
We have $\tan \theta=\frac{y}{x}=2 / 2=1$.
Since this point is in the first quadrant, we have $\theta=\frac{\pi}{4}$.
Therefore the polar co-ordinates for the point $(2,2)$ are $\left(\sqrt{8}, \frac{\pi}{4}\right)$.
- For $(1,-\sqrt{3})$, we have $x=1, y=-\sqrt{3}$. Therefore
$r^{2}=x^{2}+y^{2}=1+3=4$, and $r=2$.
We have $\tan \theta=\frac{y}{x}=-\sqrt{3}$.
Since this point is in the fourth quadrant, we have $\theta=\frac{-\pi}{3}$.
Therefore the polar co-ordinates for the point $(1,-\sqrt{3})$ are $\left(2, \frac{-\pi}{3}\right)$.

Example 3

Example 3 Give polar coordinates for the point (given in Cartesian co-ordinates) $(-1, \sqrt{3})$

- For $(-1, \sqrt{3})$, we have $x=-1, y=\sqrt{3}$. Therefore
$r^{2}=x^{2}+y^{2}=1+3=4$, and $r=2$.
We have $\tan \theta=\frac{y}{x}=-\sqrt{3}$.
Since this point is in the second quadrant, we have $\theta=\frac{2 \pi}{3}$.
Therefore the polar co-ordinates for the point $(-1, \sqrt{3})$ are $\left(2, \frac{2 \pi}{3}\right)$.

Graphing Equations in Polar Coordinates

The graph of an equation in polar coordinates $r=f(\theta)$ or $F(r, \theta)=0$ consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

- Lines: A line through the origin $(0,0)$ has equation $\theta=\theta_{0}$
- Circle centered at the origin: A circle of radius r_{0} centered at the origin has equation $r=r_{0}$ in polar coordinates.

Example 4 Graph the following equations $r=5, \theta=\frac{\pi}{4}$

- The equation $r=5$ describes a circle of radius 5 centered at the origin. The equation $\theta=\frac{\pi}{4}$ describes a line through the origin making an angle of $\frac{\pi}{4}$ with the positive x axis.

Example 5

Example 5 Graph the equation $r=6 \sin \theta$ and convert the equation to an equation in Cartesian coordinates.

θ	r
0	
$\frac{\pi}{4}$	
$\frac{\pi}{2}$	
$\frac{3 \pi}{4}$	
π	
$\frac{5 \pi}{4}$	
2π	

- We find the value of r for specific values of θ in order to plot some points on the curve. We note that it is enough to sketch the graph on the interval $0 \leq \theta \leq 2 \pi$, since $(r(\theta), \theta)=(r(\theta+2 \pi), \theta+2 \pi)$.

Example 5

Example 5 Graph the equation $r=6 \sin \theta$ and convert the equation to an equation in Cartesian coordinates.

θ	r
0	0
$\frac{\pi}{4}$	$6 / \sqrt{2}$
$\frac{\pi}{2}$	6
$\frac{3 \pi}{4}$	$6 / \sqrt{2}$
π	0
$\frac{5 \pi}{4}$	$-6 / \sqrt{2}$
$\frac{3 \pi}{2}$	-6

- We find the value of r for specific values of θ in order to plot some points on the curve. We note that it is enough to sketch the graph on the interval $0 \leq \theta \leq 2 \pi$, since
$(r(\theta), \theta)=(r(\theta+2 \pi), \theta+2 \pi)$.
- When we plot the points, we see
that they lie on a circle of radius 3 centered at $(0,3)$ and that the curve traces out this circle twice in an anticlockwise direction as θ increases from 0 to 2π.

- The equation in Cart. co-ords is $x^{2}+(y-3)^{2}=9$.

Example 5

Example 5 Graph the equation $r=6 \sin \theta$ and convert the equation to an equation in Cartesian coordinates.

θ	r	Cartesian Co-ords (x, y)
0	0	$(0,0)$
$\frac{\pi}{4}$	$6 / \sqrt{2}$	$(3,3)$
$\frac{\pi}{2}$	6	$(0,6)$
$\frac{3 \pi}{4}$	$6 / \sqrt{2}$	$(-3,3)$
π	0	$(0,0)$
$\frac{5 \pi}{4}$	$-6 / \sqrt{2}$	$(3,3)$
$\frac{3 \pi}{2}$	-6	$(0,6)$

It may help to calculate the cartesian co-ordinates in order to sketch the curve.

Example 6

Example 6 Graph the equation $r=1+\cos \theta$. Check the variations shown at end of lecture notes.

θ	r	Cartesian Co-ords (x, y)
0		
$\frac{\pi}{4}$		
$\frac{\pi}{2}$		
$\frac{3 \pi}{4}$		
π		
$\frac{5 \pi}{4}$		
$\frac{3 \pi}{2}$		
$\frac{7 \pi}{4}$		
2π		

Example 6

Example 6 Graph the equation $r=1+\cos \theta$. Check the variations shown at end of lecture notes.

θ	r	Cartesian Co-ords (x, y)
0	2	$(2,0)$
$\frac{\pi}{4}$	$\frac{\sqrt{2}+1}{\sqrt{2}}$	$\left(\frac{\sqrt{2}+1}{2}, \frac{\sqrt{2}+1}{2}\right)$
$\frac{\pi}{2}$	1	$(0,1)$
$\frac{3 \pi}{4}$	$\frac{\sqrt{2}-1}{\sqrt{2}}$	$\left(\frac{-(\sqrt{2}-1)}{2}, \frac{\sqrt{2}-1}{2}\right)$
π	0	$(0,0)$
$\frac{5 \pi}{4}$	$\frac{\sqrt{2}-1}{\sqrt{2}}$	$\left(\frac{-(\sqrt{2}-1)}{2}, \frac{-(\sqrt{2}-1)}{2}\right)$
$\frac{3 \pi}{2}$	1	$(0,-1)$
$\frac{7 \pi}{4}$	$\frac{\sqrt{2}+1}{\sqrt{2}}$	$\left(\frac{(\sqrt{2}+1)}{2}, \frac{-(\sqrt{2}+1)}{2}\right)$
2π	2	$(2,0)$

- We find the value of r for specific values of θ in order to plot some points on the curve. We note that it is enough to sketch the graph on the interval
$0 \leq \theta \leq 2 \pi$, since
$(r(\theta), \theta)=(r(\theta+2 \pi), \theta+2 \pi)$.
- When we plot the points, we see that they lie on a heart shaped curve.

Circles

We have many equations of circles with polar coordinates: $r=a$ is the circle centered at the origin of radius $a, r=2 a \sin \theta$ is the circle of radius a centered at $\left(a, \frac{\pi}{2}\right)$ (on the y-axis), and $r=2 a \cos \theta$ is the circle of radius a centered at $(a, 0)$ (on the x-axis).
Below, we show the graphs of $r=2, r=4 \sin \theta$ and $r=4 \cos \theta$.

Tangents to Polar Curves

If we want to find the equation of a tangent line to a curve of the form $r=f(\theta)$, we write the equation of the curve in parametric form, using the parameter θ.

$$
x=r \cos \theta=f(\theta) \cos \theta, \quad y=r \sin \theta=f(\theta) \sin \theta
$$

From the calculus of parametric equations, we know that if f is differentiable and continuous we have the formula:

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta}{f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

Note As usual, we locate horizontal tangents by identifying the points where $d y / d x=0$ and we locate vertical tangents by identifying the points where $d y / d x=\infty$

Tangents to Polar Curves

If we want to find the equation of a tangent line to a curve of the form $r=f(\theta)$, we write the equation of the curve in parametric form, using the parameter θ.

$$
x=r \cos \theta=f(\theta) \cos \theta, \quad y=r \sin \theta=f(\theta) \sin \theta
$$

From the calculus of parametric equations, we know that if f is differentiable and continuous we have the formula:

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta}{f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

Note As usual, we locate horizontal tangents by identifying the points where $d y / d x=0$ and we locate vertical tangents by identifying the points where $d y / d x=\infty$

Example: Tangents to Polar Curves

Example 8 Find the equation of the tangent to the curve $r=\theta$ when $\theta=\frac{\pi}{2}$

- We have parametric equations $x=\theta \cos \theta$ and $y=\theta \sin \theta$.
- $\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{\sin \theta+\theta \cos \theta}{\cos \theta-\theta \sin \theta}$
- When $\theta=\frac{\pi}{2}, \quad \frac{d y}{d x}=\frac{1+0}{0-\frac{\pi}{2}}=-\frac{2}{\pi}$.
- When $\theta=\frac{\pi}{2}$, the corresponding point on the curve in polar co-ordinates is given by $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ and in Cartesian co-ordinates by ($0, \frac{\pi}{2}$).

Example 8

Find the equation of the tangent to the curve $r=\theta$ when $\theta=\frac{\pi}{2}$

- We have parametric equations $x=\theta \cos \theta$ and $y=\theta \sin \theta$. and $\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{\sin \theta+\theta \cos \theta}{\cos \theta-\theta \sin \theta}$
- When $\theta=\frac{\pi}{2}, \quad \frac{d y}{d x}=\frac{1+0}{0-\frac{\pi}{2}}=-\frac{2}{\pi}$.
- When $\theta=\frac{\pi}{2}$, the corresponding point on the curve in polar co-ordinates is given by $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ and in Cartesian co-ordinates by ($0, \frac{\pi}{2}$).
- Therefore the equation of the tangent line, when $\theta=\frac{\pi}{2}$ is given by $\left(y-\frac{\pi}{2}\right)=-\frac{2}{\pi} x$.

