A polar coordinate system, gives the co-ordinates of a point with reference to a point O and a half line or ray starting at the point O. We will look at polar coordinates for points in the *xy*-plane, using the origin (0,0) and the positive *x*-axis for reference.

A point *P* in the plane, has polar coordinates (r, θ) , where *r* is the distance of the point from the origin and θ is the angle that the ray |OP| makes with the positive *x*-axis.

Example 1 Plot the points whose polar coordinates are given by

$$(2, \frac{\pi}{4})$$
 $(3, -\frac{\pi}{4})$ $(3, \frac{7\pi}{4})$ $(2, \frac{5\pi}{2})$

Note the representation of a point in polar coordinates is not unique. For instance for any θ the point $(0, \theta)$ represents the pole O. We extend the meaning of polar coordinate to the case when r is negative by agreeing that the two points (r, θ) and $(-r, \theta)$ are in the same line through O and at the same distance |r| but on opposite side of O. Thus

$$(-r, \theta) = (r, \theta + \pi)$$

Example 2 Plot the point $(-3, \frac{3\pi}{4})$

Polar to Cartesian coordinates

To convert from Polar to Cartesian coordinates, we use the identities:

$$x = r \cos \theta, \quad y = r \sin \theta$$

Example 3 Convert the following (given in polar co-ordinates) to Cartesian coordinates $(2, \frac{\pi}{4})$ and $(3, -\frac{\pi}{3})$

► For $(2, \frac{\pi}{4})$, we have r = 2, $\theta = \frac{\pi}{4}$. In Cartesian co-ordinates, we get $x = r \cos \theta = 2 \cos(\pi/4) = 2 \frac{1}{\sqrt{2}} = \sqrt{2}$ we get $y = r \sin \theta = 2 \sin(\pi/4) = 2 \frac{1}{\sqrt{2}} = \sqrt{2}$ ► For $(3, -\frac{\pi}{3})$, we have r = 3, $\theta = -\frac{\pi}{3}$. In Cartesian co-ordinates, we g

For
$$(3, -\frac{1}{3})$$
, we have $r = 3$, $\theta = -\frac{1}{3}$. In Cartesian co-ordinates, we get $x = r \cos \theta = 3 \cos(-\frac{\pi}{3}) = 3\frac{1}{2} = \frac{3}{2}$
we get $y = r \sin \theta = 3 \sin(-\frac{\pi}{3}) = 3\frac{-\sqrt{3}}{2} = \frac{-3\sqrt{3}}{2}$

Cartesian to Polar coordinates

To convert from Cartesian to polar coordinates, we use the following identities

$$r^2 = x^2 + y^2$$
, $\tan \theta = \frac{y}{x}$

When choosing the value of θ , we must be careful to consider which quadrant the point is in, since for any given number *a*, there are two angles with $\tan \theta = a$, in the interval $0 \le \theta \le 2\pi$.

Example 3 Give polar coordinates for the points (given in Cartesian co-ordinates) (2,2), $(1, -\sqrt{3})$, and $(-1, \sqrt{3})$

Example 3 Give polar coordinates for the point (given in Cartesian co-ordinates) $(-1,\sqrt{3})$

For $(-1, \sqrt{3})$, we have x = -1, $y = \sqrt{3}$. Therefore $r^2 = x^2 + y^2 = 1 + 3 = 4$, and r = 2. We have $\tan \theta = \frac{y}{x} = -\sqrt{3}$. Since this point is in the second quadrant, we have $\theta = \frac{2\pi}{3}$. Therefore the polar co-ordinates for the point $(-1, \sqrt{3})$ are $(2, \frac{2\pi}{3})$.

Graphing Equations in Polar Coordinates

The graph of an equation in polar coordinates $r = f(\theta)$ or $F(r, \theta) = 0$ consists of all points *P* that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

- Lines: A line through the origin (0,0) has equation $\theta = \theta_0$
- Circle centered at the origin: A circle of radius r_0 centered at the origin has equation $r = r_0$ in polar coordinates.

Example 4 Graph the following equations r = 5, $\theta = \frac{\pi}{4}$

• The equation r = 5 describes a circle of radius 5 centered at the origin. The equation $\theta = \frac{\pi}{4}$ describes a line through the origin making an angle of $\frac{\pi}{4}$ with the positive x axis.

Example 5 Graph the equation $r = 6 \sin \theta$ and convert the equation to an equation in Cartesian coordinates.

• We find the value of r for specific values of θ in order to plot some points on the curve. We note that it is enough to sketch the graph on the interval $0 \le \theta \le 2\pi$, since $(r(\theta), \theta) = (r(\theta + 2\pi), \theta + 2\pi)$.

Example 5 Graph the equation $r = 6 \sin \theta$ and convert the equation to an equation in Cartesian coordinates.

θ	r	
0	0	
$\frac{\pi}{4}$	$6/\sqrt{2}$	
$\frac{\pi}{2}$	6	
$\frac{3\pi}{4}$	$6/\sqrt{2}$	
π	0	
$\frac{5\pi}{4}$	$-6/\sqrt{2}$	
$\frac{3\pi}{2}$	-6	

- We find the value of r for specific values of θ in order to plot some points on the curve. We note that it is enough to sketch the graph on the interval 0 ≤ θ ≤ 2π, since (r(θ), θ) = (r(θ + 2π), θ + 2π).
- When we plot the points, we see

that they lie on a circle of radius 3 centered at (0, 3) and that the curve traces out this circle twice in an anticlockwise direction as θ increases from 0 to 2π .

• The equation in Cart. co-ords is $x^2 + (y - 3)^2 = 9.$

Example 5 Graph the equation $r = 6 \sin \theta$ and convert the equation to an equation in Cartesian coordinates.

θ	r	Cartesian Co-ords (x, y)	
0	0	(0,0)	
$\frac{\pi}{4}$	$6/\sqrt{2}$	(3,3)	$\frac{3\pi}{4}$
$\frac{\pi}{2}$	6	(0,6)	- 1 - 1
$\frac{3\pi}{4}$	$6/\sqrt{2}$	(-3,3)	
π	0	(0,0)	
$\frac{5\pi}{4}$	$-6/\sqrt{2}$	(3,3)	#
$\frac{3\pi}{2}$	-6	(0,6)	

It may help to calculate the cartesian co-ordinates in order to sketch the curve.

 $\mbox{Example 6}$ Graph the equation $r=1+\cos\theta$. Check the variations shown at end of lecture notes.

θ	r	Cartesian Co-ords (x, y)
0		
$\frac{\pi}{4}$		
$\frac{\pi}{2}$		
$\frac{3\pi}{4}$		
π		
$\frac{5\pi}{4}$		
$\frac{3\pi}{2}$		
$\frac{7\pi}{4}$		
2π		

 $\mbox{Example 6}$ Graph the equation $r=1+\cos\theta$. Check the variations shown at end of lecture notes.

θ	r	Cartesian Co-ords (x, y)	
0	2	(2,0)	
$\frac{\pi}{4}$	$\frac{\sqrt{2}+1}{\sqrt{2}}$	$\left(\frac{\sqrt{2}+1}{2},\frac{\sqrt{2}+1}{2}\right)$	
$\frac{\pi}{2}$	1	(0,1)	
$\frac{3\pi}{4}$	$\frac{\sqrt{2}-1}{\sqrt{2}}$	$\left(\frac{-(\sqrt{2}-1)}{2},\frac{\sqrt{2}-1}{2}\right)$	
π	0	(0,0)	
$\frac{5\pi}{4}$	$\frac{\sqrt{2}-1}{\sqrt{2}}$	$\left(\frac{-(\sqrt{2}-1)}{2}, \frac{-(\sqrt{2}-1)}{2}\right)$	
$\frac{3\pi}{2}$	1	(0,-1)	
$\frac{7\pi}{4}$	$\frac{\sqrt{2}+1}{\sqrt{2}}$	$\left(rac{(\sqrt{2}+1)}{2},rac{-(\sqrt{2}+1)}{2} ight)$	
2π	2	(2,0)	

 We find the value of r for specific values of θ in order to plot some points on the curve.
 We note that it is enough to sketch the graph on the interval

$$0 \le \theta \le 2\pi$$
, since $(r(\theta), \theta) = (r(\theta + 2\pi), \theta + 2\pi).$

When we plot the points, we see that they lie on a heart shaped curve.

We have many equations of circles with polar coordinates: r = a is the circle centered at the origin of radius a, $r = 2a \sin \theta$ is the circle of radius a centered at $(a, \frac{\pi}{2})$ (on the y-axis), and $r = 2a \cos \theta$ is the circle of radius a centered at (a, 0) (on the x-axis).

Below, we show the graphs of r = 2, $r = 4 \sin \theta$ and $r = 4 \cos \theta$.

If we want to find the equation of a tangent line to a curve of the form $r = f(\theta)$, we write the equation of the curve in parametric form, using the parameter θ .

$$x = r \cos \theta = f(\theta) \cos \theta, \quad y = r \sin \theta = f(\theta) \sin \theta$$

From the calculus of parametric equations, we know that if f is differentiable and continuous we have the formula:

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

Note As usual, we locate horizontal tangents by identifying the points where dy/dx = 0 and we locate vertical tangents by identifying the points where $dy/dx = \infty$

If we want to find the equation of a tangent line to a curve of the form $r = f(\theta)$, we write the equation of the curve in parametric form, using the parameter θ .

$$x = r \cos \theta = f(\theta) \cos \theta, \quad y = r \sin \theta = f(\theta) \sin \theta$$

From the calculus of parametric equations, we know that if f is differentiable and continuous we have the formula:

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

Note As usual, we locate horizontal tangents by identifying the points where dy/dx = 0 and we locate vertical tangents by identifying the points where $dy/dx = \infty$

Example: Tangents to Polar Curves

Example 8 Find the equation of the tangent to the curve $r = \theta$ when $\theta = \frac{\pi}{2}$

- We have parametric equations $x = \theta \cos \theta$ and $y = \theta \sin \theta$.
- $\blacktriangleright \quad \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\sin\theta + \theta\cos\theta}{\cos\theta \theta\sin\theta}$
- When $\theta = \frac{\pi}{2}$, $\frac{dy}{dx} = \frac{1+0}{0-\frac{\pi}{2}} = -\frac{2}{\pi}$.
- ▶ When $\theta = \frac{\pi}{2}$, the corresponding point on the curve in polar co-ordinates is given by $(\frac{\pi}{2}, \frac{\pi}{2})$ and in Cartesian co-ordinates by $(0, \frac{\pi}{2})$.

Find the equation of the tangent to the curve $r = \theta$ when $\theta = \frac{\pi}{2}$

• We have parametric equations $x = \theta \cos \theta$ and $y = \theta \sin \theta$. and $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\sin \theta + \theta \cos \theta}{\cos \theta - \theta \sin \theta}$

- When $\theta = \frac{\pi}{2}$, $\frac{dy}{dx} = \frac{1+0}{0-\frac{\pi}{2}} = -\frac{2}{\pi}$.
- ▶ When $\theta = \frac{\pi}{2}$, the corresponding point on the curve in polar co-ordinates is given by $(\frac{\pi}{2}, \frac{\pi}{2})$ and in Cartesian co-ordinates by $(0, \frac{\pi}{2})$.

• Therefore the equation of the tangent line, when $\theta = \frac{\pi}{2}$ is given by $(y - \frac{\pi}{2}) = -\frac{2}{\pi}x$.